Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Vegetative buffers for fan emissions from poultry farms: 2. ammonia, dust and foliar nitrogen.

Identifieur interne : 003761 ( Main/Exploration ); précédent : 003760; suivant : 003762

Vegetative buffers for fan emissions from poultry farms: 2. ammonia, dust and foliar nitrogen.

Auteurs : A. Adrizal [Indonésie] ; P H Patterson ; R M Hulet ; R M Bates ; C A B. Myers ; G P Martin ; R L Shockey ; M. Van Der Grinten ; D A Anderson ; J R Thompson

Source :

RBID : pubmed:18161579

Descripteurs français

English descriptors

Abstract

This study evaluated the potential of trees planted around commercial poultry farms to trap ammonia (NH(3)) and dust or particulate matter (PM). Norway spruce, Spike hybrid poplar, hybrid willow, and Streamco purpleosier willow were planted on five commercial farms from 2003 to 2004. Plant foliage was sampled in front of the exhaust fans and at a control distance away from the fans on one turkey, two laying hen, and two broiler chicken farms between June and July 2006. Samples were analyzed for dry matter (DM), nitrogen (N), and PM content. In addition, NH(3) concentrations were measured downwind of the exhaust fans among the trees and at a control distance using NH(3) passive dosi-tubes. Foliage samples were taken and analyzed separately based on plant species. The two layer farms had both spruce and poplar plantings whereas the two broiler farms had hybrid willow and Streamco willow plantings which allowed sampling and species comparisons with the effect of plant location (control vs. fan). The results showed that NH(3) concentration h(- 1) was reduced by distance from housing fans (P < or = 0.0001), especially between 0 m (12.01 ppm), 11.4 m (2.59 ppm), 15 m (2.03 ppm), and 30 m (0.31 ppm). Foliar N of plants near the fans was greater than those sampled away from the fans for poplar (3.87 vs. 2.56%; P < or = 0.0005) and hybrid willow (3.41 vs. 3.02%; P < or = 0.05). The trends for foliar N in spruce (1.91 vs. 1.77%; P = 0.26) and Streamco willow (3.85 vs. 3.33; P = 0.07) were not significant. Pooling results of the four plant species indicated greater N concentration from foliage sampled near the fans than of that away from the fans (3.27 vs. 2.67%; P < or = 0.0001). Foliar DM concentration was not affected by plant location, and when pooled the foliar DM of the four plant species near the fans was 51.3% in comparison with 48.5% at a control distance. There was a significant effect of plant location on foliar N and DM on the two layer farms with greater N and DM adjacent to fans than at a control distance (2.95 vs. 2.15% N and 45.4 vs. 38.2% DM, respectively). There were also significant plant species effects on foliar N and DM with poplar retaining greater N (3.22 vs. 1.88%) and DM (43.7 vs. 39.9%) than spruce. The interaction of location by species (P < or = 0.005) indicated that poplar was more responsive in terms of foliar N, but less responsive for DM than spruce. The effect of location and species on foliar N and DM were not clear among the two willow species on the broiler farms. Plant location had no effect on plant foliar PM weight, but plant species significantly influenced the ability of the plant foliage to trap PM with spruce and hybrid willow showing greater potential than poplar and Streamco willow for PM(2.5)(0.0054, 0.0054, 0.0005, and 0.0016 mg cm(- 2); P < or = 0.05) and total PM (0.0309, 0.0102, 0.0038, and 0.0046 mg cm(- 2), respectively; P < or = 0.001). Spruce trapped more dust compared to the other three species (hybrid willow, poplar, and Streamco willow) for PM(10) (0.0248 vs. 0.0036 mg cm(- 2); P < or = 0.0001) and PM(> 10) (0.0033 vs. 0.0003 mg cm(- 2); P = 0.052). This study indicates that poplar, hybrid willow, and Streamco willow are appropriate species to absorb poultry house aerial NH(3)-N, whereas spruce and hybrid willow are effective traps for dust and its associated odors.

DOI: 10.1080/03601230701735078
PubMed: 18161579


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Vegetative buffers for fan emissions from poultry farms: 2. ammonia, dust and foliar nitrogen.</title>
<author>
<name sortKey="Adrizal, A" sort="Adrizal, A" uniqKey="Adrizal A" first="A" last="Adrizal">A. Adrizal</name>
<affiliation wicri:level="1">
<nlm:affiliation>Faculty of Animal Husbandry, University of Jambi, Jambi, Indonesia.</nlm:affiliation>
<country xml:lang="fr">Indonésie</country>
<wicri:regionArea>Faculty of Animal Husbandry, University of Jambi, Jambi</wicri:regionArea>
<wicri:noRegion>Jambi</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Patterson, P H" sort="Patterson, P H" uniqKey="Patterson P" first="P H" last="Patterson">P H Patterson</name>
</author>
<author>
<name sortKey="Hulet, R M" sort="Hulet, R M" uniqKey="Hulet R" first="R M" last="Hulet">R M Hulet</name>
</author>
<author>
<name sortKey="Bates, R M" sort="Bates, R M" uniqKey="Bates R" first="R M" last="Bates">R M Bates</name>
</author>
<author>
<name sortKey="Myers, C A B" sort="Myers, C A B" uniqKey="Myers C" first="C A B" last="Myers">C A B. Myers</name>
</author>
<author>
<name sortKey="Martin, G P" sort="Martin, G P" uniqKey="Martin G" first="G P" last="Martin">G P Martin</name>
</author>
<author>
<name sortKey="Shockey, R L" sort="Shockey, R L" uniqKey="Shockey R" first="R L" last="Shockey">R L Shockey</name>
</author>
<author>
<name sortKey="Van Der Grinten, M" sort="Van Der Grinten, M" uniqKey="Van Der Grinten M" first="M" last="Van Der Grinten">M. Van Der Grinten</name>
</author>
<author>
<name sortKey="Anderson, D A" sort="Anderson, D A" uniqKey="Anderson D" first="D A" last="Anderson">D A Anderson</name>
</author>
<author>
<name sortKey="Thompson, J R" sort="Thompson, J R" uniqKey="Thompson J" first="J R" last="Thompson">J R Thompson</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2008">2008</date>
<idno type="RBID">pubmed:18161579</idno>
<idno type="pmid">18161579</idno>
<idno type="doi">10.1080/03601230701735078</idno>
<idno type="wicri:Area/Main/Corpus">003992</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">003992</idno>
<idno type="wicri:Area/Main/Curation">003992</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">003992</idno>
<idno type="wicri:Area/Main/Exploration">003992</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Vegetative buffers for fan emissions from poultry farms: 2. ammonia, dust and foliar nitrogen.</title>
<author>
<name sortKey="Adrizal, A" sort="Adrizal, A" uniqKey="Adrizal A" first="A" last="Adrizal">A. Adrizal</name>
<affiliation wicri:level="1">
<nlm:affiliation>Faculty of Animal Husbandry, University of Jambi, Jambi, Indonesia.</nlm:affiliation>
<country xml:lang="fr">Indonésie</country>
<wicri:regionArea>Faculty of Animal Husbandry, University of Jambi, Jambi</wicri:regionArea>
<wicri:noRegion>Jambi</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Patterson, P H" sort="Patterson, P H" uniqKey="Patterson P" first="P H" last="Patterson">P H Patterson</name>
</author>
<author>
<name sortKey="Hulet, R M" sort="Hulet, R M" uniqKey="Hulet R" first="R M" last="Hulet">R M Hulet</name>
</author>
<author>
<name sortKey="Bates, R M" sort="Bates, R M" uniqKey="Bates R" first="R M" last="Bates">R M Bates</name>
</author>
<author>
<name sortKey="Myers, C A B" sort="Myers, C A B" uniqKey="Myers C" first="C A B" last="Myers">C A B. Myers</name>
</author>
<author>
<name sortKey="Martin, G P" sort="Martin, G P" uniqKey="Martin G" first="G P" last="Martin">G P Martin</name>
</author>
<author>
<name sortKey="Shockey, R L" sort="Shockey, R L" uniqKey="Shockey R" first="R L" last="Shockey">R L Shockey</name>
</author>
<author>
<name sortKey="Van Der Grinten, M" sort="Van Der Grinten, M" uniqKey="Van Der Grinten M" first="M" last="Van Der Grinten">M. Van Der Grinten</name>
</author>
<author>
<name sortKey="Anderson, D A" sort="Anderson, D A" uniqKey="Anderson D" first="D A" last="Anderson">D A Anderson</name>
</author>
<author>
<name sortKey="Thompson, J R" sort="Thompson, J R" uniqKey="Thompson J" first="J R" last="Thompson">J R Thompson</name>
</author>
</analytic>
<series>
<title level="j">Journal of environmental science and health. Part. B, Pesticides, food contaminants, and agricultural wastes</title>
<idno type="ISSN">0360-1234</idno>
<imprint>
<date when="2008" type="published">2008</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Air Pollutants (adverse effects)</term>
<term>Air Pollutants (analysis)</term>
<term>Ammonia (adverse effects)</term>
<term>Ammonia (analysis)</term>
<term>Animals (MeSH)</term>
<term>Biomass (MeSH)</term>
<term>Dust (analysis)</term>
<term>Nitrogen (metabolism)</term>
<term>Particulate Matter (MeSH)</term>
<term>Photosynthesis (drug effects)</term>
<term>Photosynthesis (physiology)</term>
<term>Plant Development (MeSH)</term>
<term>Plant Leaves (drug effects)</term>
<term>Plant Leaves (growth & development)</term>
<term>Plant Leaves (metabolism)</term>
<term>Plants (drug effects)</term>
<term>Plants (metabolism)</term>
<term>Poultry (MeSH)</term>
<term>Species Specificity (MeSH)</term>
<term>Time Factors (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Ammoniac (analyse)</term>
<term>Ammoniac (effets indésirables)</term>
<term>Animaux (MeSH)</term>
<term>Azote (métabolisme)</term>
<term>Biomasse (MeSH)</term>
<term>Développement des plantes (MeSH)</term>
<term>Facteurs temps (MeSH)</term>
<term>Feuilles de plante (croissance et développement)</term>
<term>Feuilles de plante (effets des médicaments et des substances chimiques)</term>
<term>Feuilles de plante (métabolisme)</term>
<term>Matière particulaire (MeSH)</term>
<term>Photosynthèse (effets des médicaments et des substances chimiques)</term>
<term>Photosynthèse (physiologie)</term>
<term>Plantes (effets des médicaments et des substances chimiques)</term>
<term>Plantes (métabolisme)</term>
<term>Polluants atmosphériques (analyse)</term>
<term>Polluants atmosphériques (effets indésirables)</term>
<term>Poussière (analyse)</term>
<term>Spécificité d'espèce (MeSH)</term>
<term>Volaille (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="adverse effects" xml:lang="en">
<term>Air Pollutants</term>
<term>Ammonia</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>Air Pollutants</term>
<term>Ammonia</term>
<term>Dust</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Nitrogen</term>
</keywords>
<keywords scheme="MESH" qualifier="analyse" xml:lang="fr">
<term>Ammoniac</term>
<term>Polluants atmosphériques</term>
<term>Poussière</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Feuilles de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Photosynthesis</term>
<term>Plant Leaves</term>
<term>Plants</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Feuilles de plante</term>
<term>Photosynthèse</term>
<term>Plantes</term>
</keywords>
<keywords scheme="MESH" qualifier="effets indésirables" xml:lang="fr">
<term>Ammoniac</term>
<term>Polluants atmosphériques</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Plant Leaves</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Plant Leaves</term>
<term>Plants</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Azote</term>
<term>Feuilles de plante</term>
<term>Plantes</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Photosynthèse</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Photosynthesis</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Biomass</term>
<term>Particulate Matter</term>
<term>Plant Development</term>
<term>Poultry</term>
<term>Species Specificity</term>
<term>Time Factors</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Biomasse</term>
<term>Développement des plantes</term>
<term>Facteurs temps</term>
<term>Matière particulaire</term>
<term>Spécificité d'espèce</term>
<term>Volaille</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">This study evaluated the potential of trees planted around commercial poultry farms to trap ammonia (NH(3)) and dust or particulate matter (PM). Norway spruce, Spike hybrid poplar, hybrid willow, and Streamco purpleosier willow were planted on five commercial farms from 2003 to 2004. Plant foliage was sampled in front of the exhaust fans and at a control distance away from the fans on one turkey, two laying hen, and two broiler chicken farms between June and July 2006. Samples were analyzed for dry matter (DM), nitrogen (N), and PM content. In addition, NH(3) concentrations were measured downwind of the exhaust fans among the trees and at a control distance using NH(3) passive dosi-tubes. Foliage samples were taken and analyzed separately based on plant species. The two layer farms had both spruce and poplar plantings whereas the two broiler farms had hybrid willow and Streamco willow plantings which allowed sampling and species comparisons with the effect of plant location (control vs. fan). The results showed that NH(3) concentration h(- 1) was reduced by distance from housing fans (P < or = 0.0001), especially between 0 m (12.01 ppm), 11.4 m (2.59 ppm), 15 m (2.03 ppm), and 30 m (0.31 ppm). Foliar N of plants near the fans was greater than those sampled away from the fans for poplar (3.87 vs. 2.56%; P < or = 0.0005) and hybrid willow (3.41 vs. 3.02%; P < or = 0.05). The trends for foliar N in spruce (1.91 vs. 1.77%; P = 0.26) and Streamco willow (3.85 vs. 3.33; P = 0.07) were not significant. Pooling results of the four plant species indicated greater N concentration from foliage sampled near the fans than of that away from the fans (3.27 vs. 2.67%; P < or = 0.0001). Foliar DM concentration was not affected by plant location, and when pooled the foliar DM of the four plant species near the fans was 51.3% in comparison with 48.5% at a control distance. There was a significant effect of plant location on foliar N and DM on the two layer farms with greater N and DM adjacent to fans than at a control distance (2.95 vs. 2.15% N and 45.4 vs. 38.2% DM, respectively). There were also significant plant species effects on foliar N and DM with poplar retaining greater N (3.22 vs. 1.88%) and DM (43.7 vs. 39.9%) than spruce. The interaction of location by species (P < or = 0.005) indicated that poplar was more responsive in terms of foliar N, but less responsive for DM than spruce. The effect of location and species on foliar N and DM were not clear among the two willow species on the broiler farms. Plant location had no effect on plant foliar PM weight, but plant species significantly influenced the ability of the plant foliage to trap PM with spruce and hybrid willow showing greater potential than poplar and Streamco willow for PM(2.5)(0.0054, 0.0054, 0.0005, and 0.0016 mg cm(- 2); P < or = 0.05) and total PM (0.0309, 0.0102, 0.0038, and 0.0046 mg cm(- 2), respectively; P < or = 0.001). Spruce trapped more dust compared to the other three species (hybrid willow, poplar, and Streamco willow) for PM(10) (0.0248 vs. 0.0036 mg cm(- 2); P < or = 0.0001) and PM(> 10) (0.0033 vs. 0.0003 mg cm(- 2); P = 0.052). This study indicates that poplar, hybrid willow, and Streamco willow are appropriate species to absorb poultry house aerial NH(3)-N, whereas spruce and hybrid willow are effective traps for dust and its associated odors.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">18161579</PMID>
<DateCompleted>
<Year>2008</Year>
<Month>04</Month>
<Day>07</Day>
</DateCompleted>
<DateRevised>
<Year>2013</Year>
<Month>11</Month>
<Day>21</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0360-1234</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>43</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2008</Year>
<Month>Jan</Month>
</PubDate>
</JournalIssue>
<Title>Journal of environmental science and health. Part. B, Pesticides, food contaminants, and agricultural wastes</Title>
<ISOAbbreviation>J Environ Sci Health B</ISOAbbreviation>
</Journal>
<ArticleTitle>Vegetative buffers for fan emissions from poultry farms: 2. ammonia, dust and foliar nitrogen.</ArticleTitle>
<Pagination>
<MedlinePgn>96-103</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>This study evaluated the potential of trees planted around commercial poultry farms to trap ammonia (NH(3)) and dust or particulate matter (PM). Norway spruce, Spike hybrid poplar, hybrid willow, and Streamco purpleosier willow were planted on five commercial farms from 2003 to 2004. Plant foliage was sampled in front of the exhaust fans and at a control distance away from the fans on one turkey, two laying hen, and two broiler chicken farms between June and July 2006. Samples were analyzed for dry matter (DM), nitrogen (N), and PM content. In addition, NH(3) concentrations were measured downwind of the exhaust fans among the trees and at a control distance using NH(3) passive dosi-tubes. Foliage samples were taken and analyzed separately based on plant species. The two layer farms had both spruce and poplar plantings whereas the two broiler farms had hybrid willow and Streamco willow plantings which allowed sampling and species comparisons with the effect of plant location (control vs. fan). The results showed that NH(3) concentration h(- 1) was reduced by distance from housing fans (P < or = 0.0001), especially between 0 m (12.01 ppm), 11.4 m (2.59 ppm), 15 m (2.03 ppm), and 30 m (0.31 ppm). Foliar N of plants near the fans was greater than those sampled away from the fans for poplar (3.87 vs. 2.56%; P < or = 0.0005) and hybrid willow (3.41 vs. 3.02%; P < or = 0.05). The trends for foliar N in spruce (1.91 vs. 1.77%; P = 0.26) and Streamco willow (3.85 vs. 3.33; P = 0.07) were not significant. Pooling results of the four plant species indicated greater N concentration from foliage sampled near the fans than of that away from the fans (3.27 vs. 2.67%; P < or = 0.0001). Foliar DM concentration was not affected by plant location, and when pooled the foliar DM of the four plant species near the fans was 51.3% in comparison with 48.5% at a control distance. There was a significant effect of plant location on foliar N and DM on the two layer farms with greater N and DM adjacent to fans than at a control distance (2.95 vs. 2.15% N and 45.4 vs. 38.2% DM, respectively). There were also significant plant species effects on foliar N and DM with poplar retaining greater N (3.22 vs. 1.88%) and DM (43.7 vs. 39.9%) than spruce. The interaction of location by species (P < or = 0.005) indicated that poplar was more responsive in terms of foliar N, but less responsive for DM than spruce. The effect of location and species on foliar N and DM were not clear among the two willow species on the broiler farms. Plant location had no effect on plant foliar PM weight, but plant species significantly influenced the ability of the plant foliage to trap PM with spruce and hybrid willow showing greater potential than poplar and Streamco willow for PM(2.5)(0.0054, 0.0054, 0.0005, and 0.0016 mg cm(- 2); P < or = 0.05) and total PM (0.0309, 0.0102, 0.0038, and 0.0046 mg cm(- 2), respectively; P < or = 0.001). Spruce trapped more dust compared to the other three species (hybrid willow, poplar, and Streamco willow) for PM(10) (0.0248 vs. 0.0036 mg cm(- 2); P < or = 0.0001) and PM(> 10) (0.0033 vs. 0.0003 mg cm(- 2); P = 0.052). This study indicates that poplar, hybrid willow, and Streamco willow are appropriate species to absorb poultry house aerial NH(3)-N, whereas spruce and hybrid willow are effective traps for dust and its associated odors.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Adrizal</LastName>
<ForeName>A</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Faculty of Animal Husbandry, University of Jambi, Jambi, Indonesia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Patterson</LastName>
<ForeName>P H</ForeName>
<Initials>PH</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hulet</LastName>
<ForeName>R M</ForeName>
<Initials>RM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Bates</LastName>
<ForeName>R M</ForeName>
<Initials>RM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Myers</LastName>
<ForeName>C A B</ForeName>
<Initials>CA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Martin</LastName>
<ForeName>G P</ForeName>
<Initials>GP</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Shockey</LastName>
<ForeName>R L</ForeName>
<Initials>RL</Initials>
</Author>
<Author ValidYN="Y">
<LastName>van der Grinten</LastName>
<ForeName>M</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Anderson</LastName>
<ForeName>D A</ForeName>
<Initials>DA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Thompson</LastName>
<ForeName>J R</ForeName>
<Initials>JR</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>J Environ Sci Health B</MedlineTA>
<NlmUniqueID>7607167</NlmUniqueID>
<ISSNLinking>0360-1234</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000393">Air Pollutants</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004391">Dust</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D052638">Particulate Matter</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>7664-41-7</RegistryNumber>
<NameOfSubstance UI="D000641">Ammonia</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>N762921K75</RegistryNumber>
<NameOfSubstance UI="D009584">Nitrogen</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000393" MajorTopicYN="N">Air Pollutants</DescriptorName>
<QualifierName UI="Q000009" MajorTopicYN="N">adverse effects</QualifierName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000641" MajorTopicYN="N">Ammonia</DescriptorName>
<QualifierName UI="Q000009" MajorTopicYN="Y">adverse effects</QualifierName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018533" MajorTopicYN="N">Biomass</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004391" MajorTopicYN="N">Dust</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009584" MajorTopicYN="N">Nitrogen</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D052638" MajorTopicYN="N">Particulate Matter</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010788" MajorTopicYN="N">Photosynthesis</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D063245" MajorTopicYN="N">Plant Development</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010944" MajorTopicYN="N">Plants</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011200" MajorTopicYN="N">Poultry</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013045" MajorTopicYN="N">Species Specificity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013997" MajorTopicYN="N">Time Factors</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2007</Year>
<Month>12</Month>
<Day>29</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2008</Year>
<Month>4</Month>
<Day>9</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2007</Year>
<Month>12</Month>
<Day>29</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">18161579</ArticleId>
<ArticleId IdType="pii">789006875</ArticleId>
<ArticleId IdType="doi">10.1080/03601230701735078</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Indonésie</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Anderson, D A" sort="Anderson, D A" uniqKey="Anderson D" first="D A" last="Anderson">D A Anderson</name>
<name sortKey="Bates, R M" sort="Bates, R M" uniqKey="Bates R" first="R M" last="Bates">R M Bates</name>
<name sortKey="Hulet, R M" sort="Hulet, R M" uniqKey="Hulet R" first="R M" last="Hulet">R M Hulet</name>
<name sortKey="Martin, G P" sort="Martin, G P" uniqKey="Martin G" first="G P" last="Martin">G P Martin</name>
<name sortKey="Myers, C A B" sort="Myers, C A B" uniqKey="Myers C" first="C A B" last="Myers">C A B. Myers</name>
<name sortKey="Patterson, P H" sort="Patterson, P H" uniqKey="Patterson P" first="P H" last="Patterson">P H Patterson</name>
<name sortKey="Shockey, R L" sort="Shockey, R L" uniqKey="Shockey R" first="R L" last="Shockey">R L Shockey</name>
<name sortKey="Thompson, J R" sort="Thompson, J R" uniqKey="Thompson J" first="J R" last="Thompson">J R Thompson</name>
<name sortKey="Van Der Grinten, M" sort="Van Der Grinten, M" uniqKey="Van Der Grinten M" first="M" last="Van Der Grinten">M. Van Der Grinten</name>
</noCountry>
<country name="Indonésie">
<noRegion>
<name sortKey="Adrizal, A" sort="Adrizal, A" uniqKey="Adrizal A" first="A" last="Adrizal">A. Adrizal</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003761 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 003761 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:18161579
   |texte=   Vegetative buffers for fan emissions from poultry farms: 2. ammonia, dust and foliar nitrogen.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:18161579" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020